RL-TR-95-112
Final Technical Report
June 1995

KNOWLEDGE-BASED
AUTOMATIC GRAPH LAYOUT

CoGenTex, Inc.

Dr. Ehud Reiter

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED.

19950724 019

DTi€ QUALITY INEPECTED 8

Rome Laboratory
Air Force Materiel Command
Griffiss Air Force Base, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign natioms.

RL-TR-95-112 has been reviewed and is approved for publication.

APPROVED:

DOUGLAS A, WHITE
Project Engineer

%w\la)
FOR THE COMMANDER: % /

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

1f your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,

please notify RL (C3CA) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE | GiB R85 staotes

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

mmmmhmwwmmrMMMdﬁmSu\dmrmﬁswmawcﬁ-nraspeadth's
colection of information, including suggestions for reducing this burden, to Washington Hesdquarters Services, Dectorate for information Operations andReports, 1215 Jefferson
Dawis Higrway, Sute 1204, Arington, YA 222024302, and to the Office of Managernent and Budget, Paperwork Reduction Proiject (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1995 Final Aug 94 - Mar 95
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
C - F30602-94-C-0281
KNOWLEDGE~BASED AUTOMATIC GRAPH LAYOUT PE - 62702F
PR - 5581
6. AUTHOR(S) TA - 27
Dr. Ehud Reiter WU - PP
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

CoGenTex, Inc.
Village Green, Suite 5
840 Hanshaw Road

Ithaca NY 14850~1589 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Rome Laboratory (C3CA) AGENCY REPORT NUMBER
525 Brooks Rd

Griffiss AFB NY 13441-4505 RL-TR-95-112

11. SUPPLEMENTARY NOTES :
Rome Laboratory Project Engineer: Douglas A, White/C3CA/(315) 330-3564

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public releasej distribution unlimited.

13. ABSTRACT (Madmum 200 words)

This report describes the initial investigation of the applicationsof ideas and
techniques, drawn from Natural Language Generation (NLG) experience, that can improve
the quality and usefulness of diagrams produced by automatic graph layout systems.
Section 1 of the report gives information on automatic graph layout and NLG,
summarizes the investigation and its findings, and illustrates how some specific
diagrams can by improved by the identified techniques. Section 2 summarizes the
state-of-the-art. Sections 3 through 8 discuss sublanguages, pragmatics, document
planning, user and task tailoring, psychological knowledge, and consistency issues.
Section 9 speculates about possible document creation using "integrated multimodal
theory," and Section 10 contains conclusions.

14. SUBJECT TERMS 15. Ngnzm-'n OF PAGES

Graph layout; Natural language generation, Automatic programming,

PRICE CODE
Formal methods, Knowledge~based systems e

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

unCEREEPTen T RN AT eo uL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescrived by ANSI Std 23918
208-102

1 Introduction

The goal of this project is to identify ideas and techniques which can improve
the quality and usefulness of diagrams produced by Automatic Graph Lay-
out (AGL) systems, drawing on CoGenTex’s experience in Natural-Language
Generation (NLG). Since ‘automatic graphic generation’ and ‘automatic text
generation’ are both special cases of ‘automatic document generation’, we be-
lieve that substantial opportunities exist for cross-fertilization between AGL
and NLG. In particular, we believe there are many concepts that have per-
haps been more highly developed in the NLG community than in the AGL
community, and could usefully be transitioned to AGL systems: these include
sublanguages, pragmatics, and document planning.

The similarity that we see between techniques for “effective textual pre-
sentation of information” and “effective graphical presentation of informa-
tion” also suggests that, in the longer-term, it may be possible to develop
an integrated theory that can be used as the basis of all computer-to-human
communication, regardless of the media. We are a long way from having
such a theory, but if it could be developed, it would be of great theoretical
interest, and also provide a solid foundation for attempts to build intelligent
multimedia systems.

Our current project has been a small initial exploration, aimed more at
identifying promising directions than at developing usable technology. We
have read the AGL literature, consulted with AGL experts, experimented
with state-of-the-art AGL software, and analyzed human-authored diagrams.
We have also built a small demo system that shows how some of our ideas
could be used (in a simple and straightforward way) to improve some of the
diagrams produced by Knowledge-Based Software Assistant (KBSA) Ad-
vanced Developed Model (ADM), an advanced Computer-Aided Software
Engineering (CASE) system being developed by Andersen Consulting for
Rome Laboratory. ‘

The remainder of Section 1 gives background information on AGL and
NLG, summarizes our investigation and its findings, and illustrates how some

specific ADM diagrams could be improved by the techniques we have identi- -

fied. Section 2 summarizes previous and related work, including the current

commercial state-of-the-art. The next six sections analyze the applicability of =

specific NLG techniques to AGL: Section 3 discusses sublanguages; Section 4
discusses pragmatics; Section 5 discusses document planning; Section 6 dis-

m For y e
A&T m/
0
zed 0O
aticn

cusses user and task tailoring; Section 7 discusses using psychological knowl-
edge; and Section 8 discusses consistency. Section 9 is more speculative,
and discusses the possibility of creating an ‘integrated multimodal theory’
of document creation. Section 10 gives our concluding comments, and an

Appendix describes how to run our demo system.
I very gratefully acknowledge the help of Michael White and Ted Caldwell

in performing this research, creating the demo system, and writing the Final
Report. Any mistakes, errors, or omissions are solely my responsibility.

1.1 Automatic Graph Layout

Automatic Graph Layout (AGL) systems automatically produce diagrams
from raw computer data. In the CASE domain, for example, an AGL system
might be used to automatically draw an appropriate Entity-Relation (E-R)
diagram from an SQL database definition; to automatically draw a class dia-
gram for an object-oriented system, using information obtained by analyzing
C++ class definitions; or to automatically draw an annotated task/subtask
tree that communicates project management data extracted from a project
management database. AGL technology is starting to be incorporated in
advanced CASE systems, including the ADM system being developed by
Andersen Consulting for Rome Laboratory, and the ROSE system marketed
by Rational.

In this project, we have focused on AGL techniques that are relevant to
automatically producing E-R diagrams. This means in particular that we
have focused on AGL techniques that are relevant for producing network di-
agrams, i.e., graphics which show a set of nodes (entities) and links between
the nodes (relations). Other common examples of network diagrams include
class diagrams, dataflow diagrams and flowcharts. We have paid less atten-
tion to AGL techniques used to produce data graphics such as bar charts and
scatter plots, although we have read some of the (substantial) literature in
this area.

The acronym AGL is often taken to mean aesthetic graph layout, i.e.,
the automatic generation of ‘nice-looking’ diagrams. We believe, however,
that the true goal of AGL should be to generate effective and understandable
diagrams, which does not always mean the same thing. That is, we believe
AGL systems should be considered effective if human users find them to be
a useful way of obtaining or authoring certain kinds of information; whether

the diagrams produced are pleasing to the eye or not is a secondary issue.
Furthermore, effectiveness can probably only be judged in the context of
a particular task; different techniques may be appropriate in different task
contexts. An AGL system that works very well as an aid to a human diagram-
creator, for example, may be less effective as a tool for presenting information
automatically extracted from existing database definitions.

1.2 Natural Language Generation

Our background is in Natural Language Generation (NLG) technology, that

is in building systems that automatically generate texts from computer data.

For example, in other projects CoGenTex has developed systems that auto-
matically generate project management reports [KMR93], weather reports[GDK94],
statistical summaries [IKK*+92], and job descriptions [CK94].

Perhaps for historical reasons,! the NLG community has often paid more
explicit attention to communicative issues than the AGL community. NLG
systems are often thought of as fulfilling ‘task-dependent communicative
goals’, and evaluated in terms of how effectively they achieve their goals. The
NLG community has also in many ways placed more emphasis on thinking
about what criteria make a text segment effective at fulfilling a communica-
tive goal; the AGL community, in contrast, has often tended to place primary
emphasis on devising fast algorithms, and perhaps less emphasis on ensuring
that what is produced by the algorithms is indeed what is wanted. Because
of this, we believe that there are things that AGL system builders can learn
from NLG system builders; no doubt NLG system builders can also learn
from AGL system builders.

1.3 The Investigation

This project has been a small? initial study of the applicability of NLG ideas
to AGL, aimed primarily at surveying the current state-of-the-art in AGL
and evaluating which NLG ideas have the most promise for improving the

!The NLG community has been heavily influenced by philosophical ideas about commu-
nication, such as speech act theory [Sea69]. The AGL community, in contrast, has largely
evolved out of work by algorithm and complexity theorists on graph-related algorithms.

2About 4 person-months.

state-of-the-art. Our goal has been more to identify promising directions than
to develop fieldable technology. In particular, we have during this project

e read numerous academic papers about AGL;

e consulted with several AGL experts from universities and commercial
laboratories;

e experimented with several existing AGL systems, including CLEAR
Software’s allClear system, Tom Sawyer’s Graph Layout Toolkit [Tom94],
AT&T’s dotty system [NK94], the KBSA Concept Demo [DMBS92],
and KBSA Advanced Development Model (ADM);3

e analyzed a variety of human-produced diagrams.

1.4 Summary of Findings

In summary, our conclusions about the applicability of NLG ideas to AGL
are as follows:

e Graphical languages, like textual languages, are strongly affected by
the sublanguage phenomena [GK86]. In other words, in graphics, as in
text, different ‘genres’ have evolved, and graphics-generation systems,
like text-generation systems, need to respect the genre conventions that
their users expect to see obeyed. This means that it may be inappro-
priate to attempt to build ‘universal’ AGL systems, as many people
in the field are attempting to do; it may be more appropriate to build
highly parametrizable systems that can be customized for many differ-
ent sublanguages.

¢ Human users attach importance to pragmatic phenomena such as node
alignment and proximity; they do not simply look at what nodes are

3AllClear is a flowcharting tool that has AGL capabilities. Tom Sawyer’s Graph Layout
Toolkit is the only commercially available toolkit for laying out network diagrams that we
are aware of. AT&T’s dotty system was recommended to us as an advanced AGL tool for
network diagrams that is being used in-house by a major company. The KBSA Concept
Demo and Advanced Development Model are research prototypes of an advanced CASE
system, and include AGL components which can produce a variety of CASE diagrams,
including E-Rs.

connected to what other nodes. Current AGL systems can and should
be modified to use such pragmatic features to convey information about
(in particular) functional grouping and the relative importance/salience
of nodes. However, at least in the immediate future, it probably will
be difficult for AGL systems to detect when a diagram accidentally
conveys unwanted and incorrect pragmatic inferences, i.e., determine
whether a diagram is free of false implicatures [MR90].

o Textual documents consist of numerous paragraphs (sections, chapters,
etc.); it would be inappropriate in most cases to produce a single large
paragraph that goes on for several pages. In many cases, it is also
useful for AGL systems to use document planning techniques to split
up large diagrams into a structured set of smaller diagrams, perhaps
connected by hypertext (hypergraphics) links.

o At a high level (e.g., diagram authoring vs. diagram browsing), the
user’s task should be taken into consideration when designing an AGL
system. Automatically tailoring diagrams according to a detailed model
of the user and his task (e.g., the user is an experienced analyst who is
trying to validate a proposed database schema) would be desirable, but
is likely to require a substantial amount of domain knowledge, which
may not always be available.

¢ Basing AGL rules on psychological knowledge of the human user is a
laudable long-term goal, but it will be hard to do this in the short term,
given the current state of psychological knowledge.

e Diagram consistency is very important, but it is not clear what ideas
we as NLG experts can offer to achieve this, except enforcement of a
strong sublanguage. This is partially due to the fact that differences in
human visual and linguistic perception may mean that different kinds
of consistency are important for language and for graphics.

We can summarize many of the above points by saying that AGL systems
should take into account contextual information as well as the actual nodes
and edges that need to be drawn. This contextual information should in prin-
ciple include the target sublanguage, pragmatic information about grouping
and salience, the user’s task, and the user’s psychological limitations; we
would not be surprised if subsequent research adds other factors to this list.

1.5 An Example

Figures 1, 2, 3, 4, and 5 illustrate some of the issues we are discussing. Figure
1 is an example diagram produced by the ADM AGL system. It shows an
ER-like diagram for a Hotel domain.* This is quite a reasonable layout, and
indeed the ADM system represents the state of the art in AGL systems.

Nevertheless, if we look at this diagram from the perspective of the issues
mentioned in Section 1.4, it is possible to suggest improvements. In particu-
lar, Figure 2 shows the same diagram laid out with better pragmatics; Figure
3 shows the same diagram laid out according to the E-R sublanguage given in
Barker’s textbook (Section 2.2); Figure 4 shows an overview of the diagram
produced by diagram planning techniques; and Figure 5 shows the overview
with one subnetwork expanded.®

We will now describe these diagrams in more detail. Figure 2 shows how
Figure 1 would appear with better pragmatics. In particular

¢ The importance of Hotel is emphasized by placing it in the center of
the diagram. This is also done to a certain extent in Figure 1; however,
we believe that the pragmatic fact that Hotel is the central node of the
diagram is more immediately obvious in Figure 2.

o Groupings are more evident. For example, in this diagram there are
three subnetworks that only intersect in the Hotel node; they are
{Hotel, CarRental, Airline}, {Hotel, Employee, Position, Salary, Train-
ing, Country, Regulations}, and {Hotel, Room, Reservation, Guest,
DiscountQ, and DiscountRate}. We believe that this fact is clearer in
Figure 2 than in Figure 1.

Figure 3 shows how Figure 1 would appear in the E-R sublanguage given
in Barker’s textbook (Section 2.2). For example, standard E-R symbols such

4This diagram was produced by running the agl-demo program on the file
agltest.lhotel, and asking the system to layout the diagram as a whole (instead of
incrementally).

SFigure 2 was created by manually modifying Figure 1 using ADM’s diagram editing
facilities. Figure 3 was manually created with a general drawing package (Superpaint).
The diagram overview shown in Figures 4 and 5 was computed by our demo system, and
drawn by the ADM agl-demo program.

Wav Aq podleTdsIg se weiberqg 12304 :1 2aInbB1g

s
7 D

1Cs

th Better Pragmati

iagram wi

: Hotel Di

Figure 2

QualifiesFor

DiscountQ < Guest
\ \
areQualifiedFor Makes
Car Discount Reservation
VAR \ \V/
IsAffiliatediVith Has StaysA isAt isFor
isAffiliat
A
il
Airline Has < Room
isAffiliatedWith Hotel
Has Has isLocatedIn
N
Has
Position Employee
Y
Earns Receives ConsistsOf
AN A l
Training B Country
Affect areEffectiveln
N
Affect
Salary < Regulations

Figure 3: Hotel Diagram in E-R Sublanguage

9

o s

_

.
Y

RN
3

R
0

%

e

&

22

N30 L
PP R IA

X
0
3

S
RN
X8

$<

53

R
N
8
R
KA,

3

>
755%;

3
X
7

3
S
o‘;\,:‘
S

\,\’t\‘%

e
AN

%

% S5
S
s

Hotel Diagram Overview (from demo)

.
.

Figure 4

10

popurdxy ydeabdans auo

Y3IM MOTAISAQ wexb

v
G
G

e1d T®@30H

g 2inbta

2

as the ‘crows foot’ are used,® and although most edges are horizontal or
vertical, some diagonal edges are also present. ’

Figure 4 shows an application of diagram planning; this is an overview di-
agram that shows the central Hotel node and the three subnetworks that link
to it. Figure 5 shows the diagram overview with one subnetwork expanded.
The diagram overview was automatically created by our demo system, using
a standard clustering algorithm [BS91].

Figures 6, 7, and 8 illustrate another example of how a diagram produced
by the ADM system might be improved using the techniques we are exam-
ining. Figure 6 shows a class diagram for various kinds of Documents; it
was produced by the ADM AGL system.” Like most object-oriented class
diagrams, it contains both inheritance (is-a) and relational links. Unfortu-
nately, this makes the diagram difficult to display, because relational links
should ideally be shown with a network-type layout, while inheritance links
should ideally be shown with a tree or hierarchical layout. Figure 7 was pro-
duced automatically from Figure 6 by our demo system,; in it, only relational
links that apply to the superclass are displayed, using ADM’s network layout
mode. Inheritance links and relations between subclasses have been placed
into a separate subdiagram, which is drawn in ADM’s hierarchical mode, and
is shown in Figure 8. Separating the links into different diagrams allows each
type of information to be drawn according to the layout mode (sublanguage)
which is most appropriate for it.

6The crows foot is a set of branching lines, and specifies a ‘many’ cardinality for a
relation. For example, since Hotels can have many Rooms, there is a crows foot on the
Room end of the Hotel Has Room relation.

"This is the Document module from the file building-blocks.msl, drawn in non-
incremental layout mode.

12

&

%

i

SI0A05S
%

SRRy

3
1

Displayed by ADM

fagram as

Document Di

.
.

Figure 6

7

i
7
)
s
e

X

Svsid
72
-

28

%
o
S

5557
G
ez

o
T
i

%

7
s

S
£

GRS
T

g

.

Figure 7: Document Diagram with Inheritance Information Suppressed

weibe1g juswnoog JI0J werbelpqns aluejzTIsyul :g 2InbTjg

‘anseTaf Py RIBded DOUIEIGS

64 U piogRISIES pRUEILOD,

i

S

2 Previous and Related Work

2.1 Academic Research on AGL

There is an extensive academic literature on AGL for network diagrams;
hundreds of papers have been published on the topic, and there is annual
conference on Graph Drawing. In very general terms, most academic AGL
research has concentrated on investigating efficient algorithms, and relatively
little work has been done on characterizing what criteria a diagram should
satisfy in order to be understandable and effective. In other words, a ‘typical’
AGL research paper will assume some fairly general criteria (see below), and
then propose an efficient algorithm for generating layouts that meet these
constraints under certain conditions. [ET89] is an extensive AGL bibliogra-
phy that focuses on algorithmic papers.

An example of a paper from this genre that is specifically targeted towards
generating E-R diagrams is [TBT83]. The following diagram criteria are used:

¢ Minimize edge crossings
¢ Minimize bends in lines
¢ Minimize line length

e Use equal-length connections between relationship boxes and related
entity boxes

The first three criteria are ‘universal’ rules that the paper’s first author,
Roberto Tamassia (a well-known figure in the AGL community), has used
for many other kinds of diagrams as well; the fourth rule is only applicable
for E-R diagrams. This set is representative of the kind of rules assumed by
most ‘algorithmic’ AGL research.

2.2 Experienced Practitioner Rules

Besides the algorithm-oriented AGL work mentioned above, there is also a
substantial body of articles and books by graphic designers and other practi-
tioners on what makes diagrams and data graphics effective; [Ber83, Tuf83,
Tuf90] are some well-known examples. Within the CASE field, there are also
many textbooks that outline rules for drawing effective diagrams, again based

16

on the insights of experienced practitioners. A typical example of such a set
of rules, from Richard Barker’s textbook on E-R diagrams [Bar90], appears
below:

e Grouping: if a group of entities form a ‘functional group’, they should
be laid out together, in a subdiagram.

o Alignment: entity boxes should be lined up.

¢ Lines: relationship lines should mostly be horizontal or vertical; how-
ever, some diagonal lines should also be present. A diagram should
not contain large numbers of parallel relationship lines. Line crossings
should be avoided; if two lines must cross, the angle between them
should ideally be between 30 and 60 degrees. Bends in lines should be
avoided if possible.

e Overall shape: each diagram should have a unique ‘overall shape’, so
that people can quickly recognize it.

o Ordering: if a relationship has a ‘many’ end, it should be at the left or
at the top of the relation.

¢ Positioning: as a consequence of the ordering rule above, many highly-
significant entities will be in the lower-right corner of a diagram.

¢ General layout: plenty of white space should be used, to avoid clutter-
ing the diagram.

Barker’s rules are similar to, but not identical with, E-R drawing rules given
by other experts; James Martin [Mar87, M092], for example, does not use
Barker’s ordering rule for relations with a ‘many’ end. At least some of
Barker’s rules also agree with psychological knowledge about the human vi-
sual system. For example, the rule that the angle between two lines should
be at least 30 degrees agrees with findings that the human visual system re-
sponds quickly to orientation differences of 30 degrees or more [Kos94, page
267)..

There obviously is a big difference between these ‘experienced practi-
tioner’ diagramming rules, and the heuristics incorporated into most aca-
demic AGL systems (Section 2.1). It would be interesting to ask someone
like Richard Barker or James Martin what they thought of rules such as the
ones given in Section 2.1; we have not, unfortunately, been able to do so.

17

2.3 Algorithms

As mentioned above, the bulk of AGL research has concentrated on algorith-
mic issues. There have been two general approachs:

¢ Design an algorithm that incorporates a specific set of layout rules (e.g.,
[TBT83, MHT93)).

e Build a general constraint-satisfaction engine that takes as input both
a specification of the diagram and a specification of the layout rules
(e.g., [KMS94, GN94]).

The first approach seems to be much more popular, at least judging from
the number of papers published on it. Systems built with it have in the
past generally tended to be very fast but somewhat inflexible. Systems built
around constraint-satisfaction approaches, in contrast, have tended to be
slower but more flexible. However, in recent years some “embedded rule”
systems have become more flexible by parameterizing their algorithms in
various ways; the ADM AGL system is a good example of such a system. On
the other hand, constraint-based systems such as [GN94] have become faster
through the use of more sophisticated constraint-satisfaction algorithms. We
do not in this report state a preference between the two approaches; we have
focused more on the issue of ‘what should AGL systems produce’ instead of
‘how should AGL systems work’.

2.4 Commercial Systems

AGL technology is starting to appear in commercial systems; Rational’s
ROSE Object-Oriented CASE system, for example, includes some AGL capa-
bilities. We suspect this may partially be intended to support ROSE’s reverse
engineering capabilities; Rational stresses their ability to recover design in-
formation from legacy code, and this requires being able to automatically
draw diagrams from the extracted design information.

The ADM system being developed by Andersen Consulting for Rome
Laboratory includes very sophisticated AGL abilities, based on state-of-the-
art algorithms. There seems to be a good chance that some of ADM’s AGL
technology will be transferred to industry. '

AGL has also been used outside of the CASE area. Tom Sawyer’s Graph
Layout Toolkit [Tom94], for example, has been used by several customers to

18

construct diagrams of computer networks; and AT&T’s dotty system [NK94]
has been used to display data structures, process graphs, and other visual-
izations of software structures. '

Not surprisingly, commercial systems tend to use the most stable and
well-developed AGL algorithms. Tree-drawing algorithms (e.g., [RT81]) and
the STT algorithm [STT81] for drawing hierarchical graphs (e.g., PERT
charts) seem to be especially popular. Many systems also add specialized
algorithms that may in practice be primarily useful in specific genres. Tom
Sawyer, for example, has ‘Circular’ and ‘Symmetric’ layout styles which are
very useful for computer network diagrams, but probably are inappropriate
for producing CASE-related diagrams.

19

3 Sublanguages

3.1 Sublanguages in NLG

The concept of ‘sublanguages’ [GK86] is central to CoGenTex’s approach to
Natural-Language Generation. We strongly believe that practical NLG sys-
tems will need to produce output texts that obey numerous domain-specific
constraints and conventions on syntax, word choice, text structure, etc. In
other words, it is not possible to build a ‘general NLG’ system that can be
used in any domain without customization; at best one can build a ‘general
NLG shell’ with appropriate hooks for domain-specific customization.

3.2 Sublanguages in AGL

We believe sublanguages also exist and are very important in graphics. For
example, the diagram-drawing rules given in CASE textbooks (e.g., Barker’s
rules for E-R diagrams, given in Section 2.2) essentially are attempts to define
conventions, i.e., sublanguages, for drawing certain kinds of diagrams. On a
more abstract level, the psychologist Stephen Kosslyn [Kos94], has pointed
out that an experienced human reader can interpret a graphic much more
quickly if the graphic uses a ‘display format’ that the reader is familiar with;
this enables the reader to interpret the graphic by looking for visual patterns
that he or she has seen in other graphics, instead of having to interpret the
graphic from first principles.

In other words, it is important that diagrams be consistent (Section 8),
i.e., display similar kinds of information in similar ways, and sublanguages are
a very effective way of achieving consistency. For example, in the abstract it
doesn’t matter whether flowchart boxes that represent sequential operations
are shown vertically aligned (i.e., top-to-bottom) or horizontally aligned (i.e.,
left-to-right). If a human viewer is used to seeing sequences shown top-to-
bottom, however, than he or she will find a new flowchart much easier to
understand if it also follows this ‘convention’. And, similarly, an inheritance
taxonomy may be easier to understand if, like most inheritance taxonomies,
it is drawn with parents above (e.g., instead of below) their children, and with
the root node in the middle of the diagram’s top edge. It is a fundamental
principle of human-machine communication [Shn87] that similar information
in a similar context should be presented in a similar way.

20

The AGL research literature says very little about sublanguage issues,
although the need to incorporate domain-specific conventions is sometimes
acknowledged. The AGL systems we experimented with all claimed to a
greater or lesser degree to be general-purpose, but in practice usually seemed
tuned to particular kinds of diagrams. Brendan Madden, President of Tom
Sawyer Software, agreed (in a personal communication) that a substantial
amount of “specialization” was needed to get his general system to produce
acceptable layouts in particular domains and genres; and that this special-
ization included adjusting the system to conform to pre-existing conventions
in the genre.

The ADM system has some support for sublanguage variation, in that it
can draw a diagram (or pieces of a diagram) in three different styles: tree,
hierarchy, and network. In our demo system, we show a simple example of
how this ability (with a small amount of added intelligence) can be used
to increase the comprehensibility of a class diagram for an object-oriented
system. :

Several people have asked us whether sublanguages can be organized into
an inheritance taxonomy. In such a taxonomy, for example, Barker’s E-R
sublanguage might be a specialization of a generic E-R sublanguage, which
in itself was a specialization of a generic CASE diagram sublanguage, etc.
At this point we can not say whether such a taxonomy would be useful or
not; further research is needed to clarify this issue.

21

4 Pragmatics

4.1 Pragmatics in NLG

Human speakers often make pragmatic inferences from texts. For example,
suppose Sam tells Jane I really love two of my teachers, Mr. Jones and Ms.
Smith. I also have Mr. Robinson as a teacher. Jane is likely to infer from
this statement that Sam does not like Mr. Robinson as much as Mr. Jones or
Ms. Smith. Since this inference is not something that Sam explicitly stated,
it is a pragmatic inference. Pragmatic correctness has been a factor in many

NLG systems, including [Hov88, DR95].

4.2 Pragmatics in AGL

Humans make pragmatic inferences from diagrams as well as texts, and AGL
systems need to ensure that their output is pragmatically correct as well as
literally correct [MR90]. In particular:

o Importance is often pragmatically conveyed by position, e.g., a node in
the center of a diagram may be assumed (by a human viewer) to be
more important than a node in the lower-left corner. Which diagram
positions imply high importance or salience depends on the sublan-
guage conventions of the relevant diagram genre.

o Grouping information can be pragmatically conveyed by proximity and
alignment; a set of nodes that are close together and horizontally or ver-
tically aligned are often assumed by human viewers to form a semantic
(functional) group.

There are two sides to ‘pragmatic correctness’:

e The diagram should use pragmatic effects to convey useful information
about relevant importance/salience, grouping, etc.

o The diagram should not accidentally convey incorrect and unwanted
pragmatic inferences. A diagram that has this property is said to be
free of false implicatures [MR90].

22

The second type of pragmatic correctness, freedom from false implicatures,
is much harder to achieve automatically than the first, in part because we do
not have good psychological models of human visual perception, e.g., when a
particular structure will be perceived by a human viewer as a group. There
is some promising work in Gestalt psychology which may eventually lead to
such a model [BS93], but this has not happened yet.

Joe Marks has probably done the most work on pragmatics of network
diagrams [Mar91b, KMS94]. Marks treats pragmatic layout features such as
alignment and proximity as ‘Visual Organizational Features’ (VOFs). Marks
has built several systems that accept as input diagram definitions that include
VOFs as well as nodes and edges, and generate as output diagrams with the

- specified topology that also satisfy the pragmatic VOF constraints. Even
Marks’s systems, however, still have problems avoiding false implicatures,
although they are very good at using pragmatics in a positive way.

The claim is sometimes made that rules such as ‘minimize edge length’
(Section 2.2) will de facto result in appropriate groupings. For example,
we can argue that since members of a set of functionally-related nodes will
probably have more links with other members of this set than with entities
outside of the set, an AGL system that minimizes edge length is likely to place
these nodes close together. There is probably some truth to this argument, at
least for small diagrams with relatively low connectivity, but there are also
cases where better layouts can be produced by explicitly taking grouping
information into account. In the example diagrams included in Section 1.5,
for example, we believe that groupings are more obvious in Figure 2, which
was explicitly drawn with the goal of using pragmatics to convey grouping
information, than they are in Figure 1, which was automatically produced
by an AGL algorithm that used heuristics such as minimizing edge lengths.

Many of the systems we looked at, including the ADM, Tom Sawyer
and AT&T systems, could generate diagrams with embedded ‘groupings’,
‘clusters’, or ‘subdiagrams’. Some of Tom Sawyer’s layout modes also seemed
to include implicit pragmatic rules about positioning (e.g., ‘when showing a
computer network, try to put the main servers in the middle of the page’),
although the product literature was not very clear about this.

Another issue related to pragmatics is how the information should be
obtained in the first place; for example, how can the AGL system know that
a particular set of entities form a group? In some cases it may be possible
to obtain this information from semantic or domain knowledge, but it might

23

also be worth augmenting diagram-authoring environments to acquire this
information directly from human authors. For example, in an ADM-like
system, a human diagram creator could be given the option of selecting a set
of nodes and explicitly indicating that these nodes form a pragmatic group.

24

5 Document Planning and Structure

5.1 Document Planning in NLG

Text documents usually consist of many individual paragraphs, put together
in a coherent structured manner. A document that takes this form is usu-
ally more useful and comprehensible than a document that consists of a
single multipage paragraph! Other structures are also possible, e.g., small
paragraph-sized texts can be linked together as a hypertext network instead
of being linearly ordered on a page [RML95].

5.2 Document Planning in AGL

Many textbooks on creating diagrams suggest that a structured set of dia-
grams is often better than a single ‘include everything’ diagram. For example,
James Martin [MO92] suggests that instead of creating a single complex E-
R diagram that may contain hundreds of nodes and communicate dozens
of different kinds of information, it may be better to create a simple ‘sum-
mary/overview’ diagram that only shows the dozen or so most important
nodes, and has hypertext (hypergraphics) links to diagrams that give de-
tailed pictures of portions of the system. Similarly, some kinds of information
(e.g., details on entity attributes, such as whether an attribute is optional or
required) may best be shown in a separate ‘attribute information’ window
which appears when the user clicks on the main screen, instead of in the
main E-R diagram.

In other words, individual diagrams should be kept simple. Each diagram
should only contain a relatively small number of nodes, and communicate just
a few kinds of information. When it is necessary to describe a system that
has a large number of nodes and many kinds of information, this should
be done by creating many separate diagrams, each of a manageable size
and complexity. If an on-line system is used, these d1agrams can be linked
together by hypertext mechanisms.

Within an AGL context, keeping individual diagrams simple has the
added advantage that most (current) AGL algorithms do a much better job
on small diagrams than on large ones. It is much easier to automatically
produce an effective and comprehensible layout of a 10-node diagram than
of a 100-node diagram.

25

Commercial drawing packages (e.g., for creating flowcharts) often allow
users to connect individual diagrams via hypertext links, and suggest that
this be used to link summary/overview and detailed diagrams. Advanced
AGL systems such as the one in ADM allow users to specify that a set of
nodes is a subgraph, which can then be collapsed so that only a single node
appears for the entire subgraph; this is another way of getting an overview.

Some experimental hypertext systems use automatic clustering algorithms
to decompose a large graph. Purely syntactic approaches, e.g., forming sub-
graphs out of biconnected components [BS91], seem most popular. Such
syntactic criteria are probably less effective than semantic criteria (e.g., that
a certain set of nodes all convey information about one entity), but they
are also more easily implemented. In our demo system, we show that the
biconnected-component algorithm, modified to be suitable for E-R diagrams,
can produce plausible clusterings of at least some of the diagrams used in
ADM.

The hypertext community has also examined techniques such as fisheye
‘views [SB94] that simultaneously (in the same diagram) give both a diagram
overview and a close-up of one portion of the diagram. Such techniques could
probably be adapted to the display of CASE diagrams, but we are unsure
how appropriate they would be in this context.

Some data-graphics AGL systems (e.g., SAGE [RMM91]) limit the num-
ber of different kinds of information communicated in a single graphic, and
automatically produce several graphics if many kinds of information need to
be communicated. These systems do not attempt to limit the number of
individual pieces of information communicated by a single graphic.

26

6 User and Task Tailoring
6.1 User/Task Tailoring in NLG

There has been a sizable body of work in the NLG community on tailoring
texts according to a model of the user’s expertise and task. Tailoring can take
place at both a low level (e.g., syntactic tailoring as presented in [BP89}), and
at a high level (e.g., determining content and overall structure, as presented
in [Par88]). User expertise models can be quite detailed [Rei91], or simply a
choice between ‘novice’ and ‘expert’.

6.2 User/Task Tailoring in AGL

In principle, the content of a graphic should depend on the user’s task; the
graphic should present the information that is relevant to the user in the
context of what he or she is trying to do, with a presentation style that
maximizes its usefulness in context [Kos94].

In the context of producing CASE-related diagrams, we find it useful to
distinguish between

¢ domain-independent information about the user’s perceptions and pref-
erences, e.g., whether he or she needs large fonts or is color-blind,;

¢ high-level domain-independent task, including in particular whether
the user is creating a diagram (and just wants very routine layout
tasks automated); examining a diagram produced by another human
author; or examining a diagram automatically produced by information
extracted from legacy code or formal specifications;

o domain-dependent task and user information, such as the fact that
the user is a moderately experienced project manager who is currently
writing a monthly progress report for a software development project.

The first kind of information (e.g., whether the user needs large fonts)
is unquestionably important and useful. Although such factors in principle
affect text generation as well as graphics generation, there has been little
research on them in the NLG community, so we as NLG experts may not be
able to offer any special insights as to how to exploit such information.

27

The second kind of information (e.g., whether the user is creating or
browsing a diagram) is also important, and has a significant impact on de-
sired functionality. For example, automatic diagram decomposition with
clustering algorithms (as discussed in Section 5.2) can be very useful when
browsing diagrams, especially those produced automatically from specifica-
tions or legacy code; automatic decomposition may be less useful in an au-
thoring context, on the other hand, where the author is likely to want to
explicitly specify a decomposition. Conversely, incremental layout (i.e., al-
gorithms [MHT93] which preserve as much as possible of an existing layout
when small changes are made to it) is extremely useful in authoring contexts,
but less important for browsing.

The third kind of information (the specific domain task the user is per-
forming) is also unquestionably important, but utilizing it to improve dia-
grams may require a substantial (perhaps even prohibitive) amount of do-
main knowledge. In particular, there have been several attempts to tailor
data graphics (e.g., charts) in such a manner, with limited success. The
SAGE system [RMM91], for example, could alter data graphics according
to relatively detailed task models; but Steve Roth, SAGE’s creator, told us
that he found it extremely difficult in practice to acquire the detailed user
and task information he needed to successfully perform this kind of tailor-
ing. It was possible to get high-level domain-relative task information, such
as “explain why there is a cost overrun”; but impossible to get more de-
tailed information about data-presentation goals, such as “I’m interested in
how Current-Cost has compared to Projected-Cost over the lifetime of the
project.” Roth now believes that automatically tailoring presentations to
the user’s task only makes sense in limited high-volume domains, where a
knowledge-based system can be built to convert high-level domain goals into
more specific data-presentation goals that SAGE can understand. He is in-
stead now stressing semi-automated design. In the original SAGE system,
the user specified his or her goals in an abstract declarative way, and SAGE
designed an appropriate graphic based on this. In the newer SAGEBRUSH
and SAGEBOOK systems [GRKM94], an initial task-independent graphic
is produced which the user can modify, with automated support for filling
in details; in other words, the user specifies ‘task-dependent’ information by
directly modifying the graphic to make it appropriate, and doesn’t try to
declaratively express what he or she is interested in.

Steve Casner also built a data graphics system that modified its output

28

according to a specification of the user’s task [Cas91]. Casner’s system was
| different in detail from Roth’s, but his overall conclusion was the same; the
‘; system could not in practice be used for AGL, because it was too difficult to
get the task information in the format the system needed.

7 Psychological Basis
7.1 Psychology and NLG

There have been scattered efforts in the NL.G community to base algorithms
and heuristics on psychological knowledge about human language abilities.
Scott and Souza [SS90], for example, based a text-structuring algorithm on
knowledge of how human hearers comprehended texts, while Dale and Reiter
[DR95] based a referring-expression generation algorithm on knowledge of
how human speakers performed this task.

7.2 Psychology and AGL

To the best of our knowledge, there has been no effort to base AGL systems
for CASE-related diagrams on psychological models of humans perception or
creation of diagrams. In all likelihood, this is largely due to the fact that
the current state of knowledge of how people create and perceive diagrams is
very patchy. For example, a recent book [Kos94] by the psychologist Steve
Kosslyn, one of the leaders in this field, summarized all relevant psychological
findings in four pages. To be sure, this included some useful information, such
as the fact that the visual system most easily detects angle differences of 30
degrees or greater. This presumably implies that AGL systems should try to
ensure that non-parallel lines differ in angle by at least 30 degrees, and indeed
we find something similar to this in Barker’s ‘experienced practitioner’ rules
for creating E-R diagrams (Section 2.2).

Overall, however, we probably have a long way to go before we can base a
significant fraction of AGL heuristics on psychological knowledge. And this
is a pity. It certain would be nice, for example, to use Gestalt psychology as a
model of how people perceive pragmatic grouping phenomena (Section 4.2),
which several people have suggested (e.g., [BS93]), but the models presented
(at least the ones we are familiar with) are too vague and under-specified to
be incorporated into a computer algorithm. '

30

8 Consistency

8.1 Consistency in NLG

The importance of consistency in NLG depends on the genre. In many techni-
cal genres, it is important that a piece of information be presented in exactly
the same way every time it occurs. This is especially true in contexts where
texts are read by non-native speakers with limited fluency in English (or
whatever the target language is); such people are likely to become confused
if, for example, many synonyms are used in a text. Consistency is usually
enforced by making authors conform to a set of writing rules (e.g., [AEC86]);
such rules may, for example, include lists of allowed and illegal words, and
acceptable and unacceptable grammatical constructs. On the other hand,
in non-téchnical genres such as newspaper and literary writing, it is often
preferable to vary wording and syntax, i.e., to use different presentations of
information and not to be consistent.

8.2 Counsistency in AGL

Consistency in graphics may be more universally important than in text.
The human visual system has sophisticated pattern-recognition abilities, and
" diagrams will be more effective and useful if they exploit these abilities when
communicating information [Kos94)], by giving each ‘information pattern’ a
distinct ‘visual pattern’ that the user can recognize from previous experience.
This is recognized by practitioners, e.g., Barker’s ‘overall shape’ rule for
E-R diagrams (Section 2.2). The human language system may not have
such a well-developed pattern-recognition ability, which may explain why
consistency is less universally important in language. ,
There has been some work on consistency in AGL systems, e.g., [Mar91a],
and we believe that sublanguages (Section 3) are probably a powerful way of
enforcing consistency in graphics. It is not clear to us if there are any other
NLG techniques that can be applied to automating consistency in AGL.

31

9 A Multimodal Document-Creation The-
ory

We have in this project investigated whether Natural-Language Generation
(NLG) ideas can be applied to diagram generation problems. We have
stressed here the practical side of this work, i.e., the potential of using this
analysis to improve the effectiveness of AGL systems. But there is also a
very interesting theoretical prospect, namely the prospect of a ‘multimodal’
theory of document creation. If we can identify common principles that lie
behind the creation of both effective texts and effective graphics, this may
allow us to create a sound theoretical basis for ‘multimedia’ systems that
communicate information to humans by a combination of text and graphics,
plus also perhaps techniques such as animation and virtual reality. And if we
can separate ‘media-dependent’ and ‘media-independent’ principles of com-
munication with humans, this may lead us to significant insights about the
cognitive workings of the human mind, and where the line is drawn between
‘general communication abilities’ and ‘media-specific hardware’.

We are a long ways from being able to propose even the outline of such
a theory. But we find it exciting that we have identified so many similarities
between ‘NLG principles’ and ‘AGL principles’; this suggests that there really
may be possible to propose a ‘unified theory’ of computer-to-human commu-
nication. And it is also interesting that at least one of the differences we have
conjectured, namely the fact that consistency is probably more universally
important in graphics than in text, may perhaps be directly traceable to dif-
ferences in the human perceptual mechanism, i.e., the fact that the human
visual system has greater pattern recognition and matchmg abilities than the
human language system.

Somewhat to our surprise, by the way, there has been relatlvely little
previous research on comparing the underlying principles behind text gener-
ation and graphics generation (some exceptions are [MR90, AR93]). There
has been a substantial amount of work on multimodal systems that combine
text and graphics, e.g., [MEF*90, WAF*93]. Most of this work, however, has
concentrated on integration issues, such as determining what kind of infor-
mation is best communicated by each modality, and coordinating generated
text with generated graphics [FM90, WAGR91].

32

10 Conclusion

A good Automatic Graph Layout (AGL) system is very useful in an advanced
CASE environment. But the quality of diagrams produced by current AGL
systems is sometimes less than ideal, and this is hindering the spread and
acceptance of AGL technology. Based on our expertise in Natural-Language
Generation (NLG) technology, we believe that AGL systems will become
more effective and produce significantly better diagrams if they:

o Accept the need to adjust layout rules to fit the conventions or sublan-
guages that have evolved in the different graphical genres.

o Use pragmatic features such as alignment and proximity to convey in-
formation about salience, grouping, etc.

o Use document planning techniques to decompose large diagrams into
related sets of small diagrams.

o Take into consideration the user’s task, at least at a high level, and
ensure that the functionality they provide is appropriate and useful for
the expected tasks.

In short, AGL systems should take contextual factors (target genre, prag-
matic factors, user’s task, etc.) into consideration when they draw a graph,
and not just look at the literal data that needs to be presented to the diagram.

There are also some techniques which perhaps could not realistically help
commercial AGL systems in the short-term, but which are worth considering
for longer-term research efforts. These include

¢ Ensuring that diagrams do not mistakenly convey false pragmatic in-
ferences, i.e., making sure that generated diagrams are free of false
implicatures.

¢ Basing graph layout on a low-level and detailed model of exactly what
task the user is undertaking.

o Basing layout heuristics on psycholinguistic knowledge of the human
visual system.

33

Finally, we have been impressed by the numerous similarities we have
found in the underlying issues and techniques for AGL and NLG. In partic-
ular, this suggests that it may be possible to create a common ‘multimodal’
theory of how computers should communicate information to humans, re-
gardless of the manner in which the information is presented. Such a theory
would be of great practical importance, and also of great theoretical interest,
and we can only hope that our small study helps point the way towards the
construction of an integrated multimodal theory.

Acknowledgements

We are very grateful to all of the people who have helped us with this project,
including Elizabeth André, Steve Feiner, Winfried Graf, Robert Inder, Tanya
Korelsky, Edy Liongosari, Brendan Madden, Joe Marks, Kanth Miriyala,
Bhaskar Naidu, Steve North, Jon Oberlander, Thomas Rist, Nancy Roberts,
Steve Roth, Keith Stenning, and Doug White. It goes without saying, of
course, that we alone are responsible for the final content of this report. We
are also very grateful to Rome Laboratory, who supported this work under
contract F30602-94-C-0281.

34

References

[AECSS]

[AR93]

[Bar90]

[BP8Y]

[Ber83]

[BS93]

[BS91]

[CK94]

[Cas91]

AECMA. A guide for the preparation of aircraft maintenance
documentation in the international aerospace maintenance lan-
guage, 1986. Available from BDC Publishing Services, Slack
Lane, Derby, UK.

Elizabeth André and Thomas Rist. The design of illustrated doc-
uments as a planning task. In Mark Maybury, editor, Intelligent
Multimedia Interfaces. AAAI Press, 1993.

Richard Barker. CASE* Method: Entity Relationship Modelling.
Addison-Wesley, 1990. '

John Bateman and Cecile Paris. Phrasing a text in terms the
user can understand. In Proceedings of the 11th International
Joint Conference on Artificial Intelligence (IJCAI-1989), vol-
ume 2, pages 1511-1517, 1989.

J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps.
University of Wisconsin Press, 1983.

Rens Bod and Remko Scha. Deriving optimal network diagrams
by means of structural information theory, 1993. Chapter from
Deliverable 5.1 of GRACE project. Human Communication Re-
search Centre, University of Edinburgh, Edinburgh, Scotland.

Rodrigo Botafogo and Ben Shneiderman. Identifying aggregates
in hypertext structures. In Proceedings of Hypertezt-1991, pages
63-74, 1991.

David Caldwell and Tatiana Korelsky. Bilingual generation of
job descriptions from quasi-conceptual forms. In Proceedings of
the Fourth Conference on Applied Natural Language Processing
(ANLP-1994), pages 1-6, 1994.

Stephen Casner. A task-analytic approach to the automatic de-
sign of graphic presentations. ACM Transactions on Graphics,
10:111-151, 1991.

35

[DR95]

[DMBS92]

[ET89)]

[FM90]

[GDK94]

[GRKM94]

[GN94]

[GKS6]

[Hov88]

[IKK*92]

Robert Dale and Ehud Reiter. Computational interpretations
of the gricean maxims in the generation of referring expressions.
Cognitive Science, 19(2), 1995. Forthcoming.

Michael DeBellis, Kanth Miriyala, Sudin Bhat, and Bill Sasso.
KBSA Concept Demo final report. Technical report, Rome Lab-
oratory, 1992.

P. Eades and R. Tamassia. Algorithms for drawing graphs: An
annotated bibliography. Technical Report CS-89-09, Dept. of
Computer Science, Brown University, 1989.

Steve Feiner and Kathleen McKeown. Coordinating text and
graphics in explanation generation. In Proceedings of the 8th
National Conference on Artificial Intelligence (AAAI—1990) vol-
ume 1, pages 442-449, 1990.

Eli Goldberg, Norbert Driedger, and Richard Kittredge. Using
natural-language processing to produce weather forecasts. [EEE
Ezpert, 9(2):45-53, 1994.

Jade Goldstein, Stephen Roth, John Kolojejchick, and Joe Mat-
tis. A framework for knowledge-based, interactive data explo-
ration. Journal of Visual Languages and Computing, 1994. Forth-
coming.

Winfried Graf and Stefan Neurohr. Using graphical style and vis-
ibility constraints for a meaningful layout in visual programming
interfaces. Research Report RR-94-15, DFKI, Saarbruecken,
Germany, 1994.

Ralph Grishman and Richard Kittredge, editors. Analyzing Lan-
guage in Restricted Domains: Sublanguage Description and Pro-
cessing. Lawrence Erlbaum, 1986.

Eduard Hovy. Generating Natural Language under Pragmatic |
Constraints. Lawrence Erlbaum, 1988.

L. Tordanskaja, M. Kim, R. Kittredge, B. Lavoie, and
A. Polguére. Generation of extended bilingual statistical reports.

36

[KMR93)]

[KMS94]

[Kos94]

[Mar91aj

[Mar91b]

[MR90]

[Mar87]
[MO92]

[MEF+90]

In Proceedings of the 1/th International Conference on Computa-
tional Linguistics (COLING-1992), volume 3, pages 1019-1023,
1992.

Tatiana Korelsky, Daryl McCullough, and Owen Rambow.
Knowledge requirements for the automatic generation of project
management reports. In Proceedings of the Fighth Knowledge-
Based Software Engineering Conference (KBSE-1993), pages 2—
9, 1993.

Corey Kosak, Joseph Marks, and Stuart Shieber. Automating the
layout of network diagrams with specified visual organization.
IEEE Transactions on Systems, Man, and Cybernetics, 24(3),
1994.

Stephen Kosslyn. Elements of Graphic Design. W.H. Freeman,
New York, 1994.

Joe Marks. Discourse coherence and the consistent design of
informational graphics. In Proceedings of the AAAI-1991 Work-
shop on Intelligent Multimedia Interfaces, pages 29-36, 1991.

Joseph Marks. Automating the Design of Network Diagrams.
PhD thesis, Harvard University, 1991.

Joseph Marks and Ehud Reiter. Avoiding unwanted conver-
sational implicatures in text and graphics. In Proceedings of
the Eighth National Conference on Artificial Intelligence (AAAI-
1900), pages 450-456, 1990.

James Martin. Recommended Diagramming Standards for Ana-
lysts and Programmers. Prentice-Hall, 1987.

James Martin and James Odell. Object-Oriented Analysis and
Design. Prentice-Hall, 1992.

Kathleen McKeown, Michael Elhadad, Yumiko Fukumoto, Jong
Lim, Christine Lombardi, Jacques Robin, and Frank Smadja.
Natural language generation in COMET. In Robert Dale, Chris
Mellish, and Michael Zock, editors, Current Research in Natural

37

[MHT93]

[NK94]

[Par88]

[RTS81]

[Rei91]

[RML95]

[RMM91]

[SB94]

[S590]

Language Generation, pages 103-139. Academic Press, London,
1990.

Kanth Miriyala, Scot Hornick, and Roberto Tamassia. An in-
cremental approach to aesthetic graph layout. In Proceedings of
the Sizth International Workshop on Computer-Aided Software
Engineering (CASE-1993), pages 297-308, 1993.

Stephen North and Eleftherious Koutsofios. Applications of
graph visualization, 1994. Unpublished manuscript. AT&T Bell
Laboratories, Murray Hill, NJ.

Cecile Paris. Tailoring object descriptions to the user’s level of
expertise. Computational Linguistics, 14(3):64-78, 1988.

Edward Reingold and John Tilford. Tidier drawing of trees.
IEEE Transactions on Software Engineering, SE-7(2):223-228,
1981.

Ehud Reiter. A new model of lexical choice for nouns. Compu-
tational Intelligence, 7(4):240-251, 1991.

Ehud Reiter, Chris Mellish, and John Levine. Automatic gener-
ation of technical documentation. Applied Artificial Intelligence,
9, 1995. Forthcoming.

Stephen Roth, Joe Mattis, and Xavier Mesnard. Graphics and
natural language as components of automatic explanation. In
Joseph Sullivan and Sherman Tyler, editors, Intelligent User In-
terfaces, pages 207-239. ACM Press (Addison-Wesley), 1991.

Manojit Sarkar and Marc Brown. Graphical fisheye views. Com-
munications of the ACM, 37(12):73-84, 1994.

Donia Scott and Clarisse Sieckenius de Souza. Getting the mes-
sage across in RST-based text generation. In Robert Dale, Chris
Mellish, and Michael Zock, editors, Current Research in Natu-
ral Language Generation, pages 47-73. Academic Press, London,
1990.

38

[Sea69]

[Shn87]

[STT81]

[TBTS83]

[Tom94]
[Tuf83)]

[Tuf90]
[WAF+93]

J. Searle. Speech Acts: An Essay on the Philosophy of Language.
Cambridge University Press, Cambridge, 1969.

Ben Shneiderman. Designing the User Interface: Strategies for
Effective Human-Computer Interaction. Addison-Wesley, 1987.

Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Meth-
ods for visual understanding of hierarchical system structures.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-
11(2):109-125; 1981.

R. Tamassia, C. Batini, and M. Talamo. An algorithm for au-
tomatic layout of entity relationship diagrams. In C. Davis,
S. Jajodia, , P. Ng, and R. Yeh, editors, Entity-Relationship Ap-
proach to Software Engineering (Proceedings of the Third Inter-
national Conference on the Entity-Relationship Approach), pages
421-439. Elsevier, 1983.

Tom Sawyer Software. Graph layout toolkit, 1994. Available from
Tom Sawyer Software, 1824B Fourth St, Berkeley, CA 94710.

Edward Tufte. The Visual Display of Quantitative Informatzon
Graphics Press, 1983.

Edward Tufte. Envisioning Information. Graphics Press, 1990.

Wolfgang Wahlster, Elisabeth André, Wolfgang Finkler, Hans-
Jirgen Profitlich, and Thomas Rist. Plan-based integration of
natural language and graphics generation. Artificial Intellzgence,

63:387-427, 1993.

[WAGR91] Wolfgang Wabhlster, Elisabeth Andre, Winfried Graf, and

Thomas Rist. Designing illustrated texts: How language pro-
duction is influenced by graphics generation. In Proceedings of
the Fifth Conference of the European Chapter of the Association
for Computational Linguistics (EACL-1991), pages 8-14, 1991.

39

Appéndix: Demo System

We have built a simple demonstration system that shows how some of our
ideas might be used to improve some of the diagrams produced by the
ADM AGL system. Our system functions as a pre-processor to the ADM
agl-demo program; that is, given an existing agl-demo input file such as
agltest.lhotel, it will produce a modified version of this file that can be
laid out and displayed by the agl-demo program.

Partly because of limitations in the agl-demo input language, we have
concentrated on diagram planning and (limited) sublanguage effects in the
demo. We originally had considered incorporating pragmatic effects as well,
but this proved to be difficult because we could not specify explicit node
coordinates in agl-demo input files.

The demo’s output is shown in Section 1.5. In particular,

o The demo uses the biconnected-component algorithm [BS91] to auto-
matically decompose a complex graph into subgraphs. Figure 4 shows
the components produced when this algorithm is applied to the Hotel
diagram of Figure 1.

e When a diagram contains both inheritance (is-a) and relational links,
the demo will separate the inheritance information into a separate sub-
diagram that is drawn in ADM’s ‘hierarchical’ mode. Top-level rela-
tional links will be left in the main diagram, which is drawn in ADM’s
‘network’ mode. This allows different types of information to be dis-
played in different graphical sublanguages. Figures 7 and 8 show the
diagrams produced by the demo from the Document diagram shown in
Figure 6.

To run the demo, you will need a Sun-4 (SPARC) workstation that has
ADM installed, including the agl-demo program. The demo is supplied on
a Sun/UNIX tar-format tape; it is installed simply by unloading the demo
files onto the workstation. '

To run the demo, cd into the demo directory and type

processGraph agl-demo-input-file

For example,

40

processGraph agltest.lhotel

This will produce an output file called output.agl. To view this file, run the
agl-demo program, and open output.agl (use the Open... option beneath
the File menu).

Rome Laboratory

Customer Satisfaction Survey

RL-TR-

Please complete this survey, and mail to RL/IMPS,

26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly

appreciated.
Thank You
Organization Name: (Optional)
Organization POC: | (Optional)
Address:
1. on a scale of 1 to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating_____

Please use the space below to comment on _your rating. Please

suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

3. Do any specific areas of the report stand out as inferior?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

4. Please utilize the space below to comment on any other aspects
of the report. Comments on both technical content and reporting

format are desired.

#U).8. GOVERNMENT PRINTING OFFICE: 1995-610-126-50234

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
~ transition them into systems to meet customer needs. To achieve this,
Rome Lab: '

a. Conducts vigorous research, development and test programs in all
applicable technologies; .

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technoiogy, Electromagnetic Technology,
Photonics and Reliability Sciences.

